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Algorithms

1.1 Pretest

1.2 Algorithms and correctness
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sorted unsorted
i
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sorted searched unsearched
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2 CHAPTER 1. ALGORITHMS

1.3 Algorithms and efficiency

def bounded_linear_search(sequence, P):
ao (found = False
i=0
while(hot found and i < len(sequence)D: ap(n+1)
HZH[?OUHd = P(sequence[i]):

i+=1

if(found): a3

else :

def binary_search(sequence, TO, item):
cy (Low = 0

high = len(sequence)

while @igh - low > 1): ci(lgn+1)

clgn Tid = (low + high) / 2 J
compar = TO(item, sequence[mid])
if(compar < 0 ): # item comes before mid
high = mid

: # item comes after mid

low = mid + 1
else : # item is at mid

assert compar ==

low = mid

high = mid + 1

if(?ow < high and TO(item, sequence[low]) == 0):53

cy (return low)

else :
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def selection_sort(sequence, T0):
for(i in range(len(sequence){):Uo#*ﬁ”

min_pos = i
min = sequence[i]

for(j in range(i + 1, 1en(sequence{):e3n4%e4ZJ;J(;zfi471)
et if TO(sequence[j], min) < 0 :
min = sequencel[j] esY g (n—i—1)

min_pos = j

f;equence[min_pos] = sequence[i]
\fequence[i] = min

cg(n) = 3n?
150
f(n) =2n%+3n+4
100 {
50




4 CHAPTER 1. ALGORITHMS

c1g(n) = 3n?

50 f(n) =2n%+3n +4

cog(n) = 2n?
100 1

50 4

def binary_search_recursive(sequence, TO, item, start, stop):
if(start == stop:

else :

mid = (stop + start) / 2 } )
@ompar = TO(item, sequence[mid]) 7
if (compar < 0 )

return binary_search_recursive(sequence, TO,\item, start, mid)

elif(compar > 0 )

return binary_search_recursive(sequence, TO, item,

stop)
else :
return mid

!9i1\88\44\62\56\33\59\31\59\53\

unsorted

!44\56\62\88\91\3;\59\31\59\53\

sorted unsorted

!44\56\3;\62\88\9f\59\31\59\53\

———
unsearched searched unsorted
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merge sort quick sort
[91[88[44]62]56]33]59]31]59]53] 91 [88 [ 44 [62]56][33][59]31]59]53]
split partition
91 [ 88 [44[62]56] [33]59][31]59]53] (4433 ]31] [53] |91 [88]62]56]59]59]
sort ~N- sort ~N sort N sort N
4456628 91| [31]33]53]59]59] (31 ]33] 44| (56 |59 59 [62]88] 01|
merge recombine
131 [33]44]53]56[59]59]62]88]o1| 31 [33]44]53]56[59]59]62]88]o1|
i ]
sequence -~ [ 44 [ 56 [ 61 ]88 o1 31 [33[53[50[59] -
low mid high
k
ax [ [ [ [ [ [ [ [ [ [ ]
halfway through:
i ]
sequence -~ | 44 |56 | 61|88 |91 [31[33]53]59]59] ‘-
low mid high
k

aux (31|33 |44 |53 ]s6] [ | | | |

and when finished:

i ]
sequence - -- ‘44‘56‘61‘88‘91‘31‘33‘53‘59‘59‘
low mid high
k

aux [ 31 ]33 44|53 |56 |59 ]59]62]88]o1]
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ij
o1 [ 88|44 ]62]56]33]59]31]50]55] -
low high
unsearched
i J
44| 33 |91 |62]56]88 |59]|31]50]55]:-
low high
\—v—/
<pivot >pivot unsearched
i ]
44033 31]62]56[88[59]01]59]55]
low high
<pivot >pivot
i ]
- 144 ]33]31]53]56]8|59][91]59]62]:-
low high
%,—/

<pivot >pivot
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(49| 7[83]22[8|45[72]91[22]80|53|88]43[29[14]|35][55]24]37]84

(49[7]83|22[8 457291 [22]80]53[88[43[29]14[35][55]|24[37 ]84

147 [83[22]8|45]72[49[22]80|53|88[43[29[91[35]|55]|2437]84
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Data structures

Pat‘ricia Pat‘ricia
<@Ka‘rin @J(‘Jan Kris‘ie@ ®Ka‘rin @J(‘)an Kris‘len
!—‘—‘
<:EEsther Ehzabg? Megan Linnea Chelse@ Esther Elizabeth Megan Linnea
|
Annika Annal@se ®Raylee Emmaﬁg nmka Annalg?e @Ray\ee
Who is the first ancestor? Patricia Does Patricia have any children? n X . .
Who is the next child? Karin Does Karin have any childrenz (y/n) y v Mho is the flrSt ancestor? .P?tr1c1a
Who is the next child? Esther Does Esther have any children? (y/n) y How Tany ch}léren does PaFr1c1a haYeY
Who is the next child? Annika Does Annika have any children? (y/n) n ho %s Patr%C}a’s next Ch%ld? Karin
Who is Patricia’s next child? Joan
Does Esther have any more childre:? (y/m) n . do X Who is Patricia’s next child? Kriste
bocs ELizabeth have any critaren? (y/n) 3 Who 1o the et crita? amie 0% manY children does Karin haver 2
K ! Who is Karin’s next child? Esther
Does Annie have any children? (y/n) n Who is Karin’s next child? Elizabeth
Does Eli?abeth have any morg children? (y/n) n How many children does Joan have? 1
Does Karin have any more children? (y/n) n Who is Joan’s next child? Megan
Does Patricia have any more children? (y/n) y Who is the next child? Joan . .
1 . . How many children does Kristen have?
Does Joan have any children? (y/n) y Who is the next child? Megan Who is Kristen’s next child? Linnea
Does Megan have any childrgn? (y/m) n Who is Kristen’s next child? Chelsea
Ezzz i:::i:j:eh::Z :Zrem;:;li;i:Zre;Z/nI ;n) Who is the next child? Kristen How many children does Esther have?
Does Kristen have anyychildren? (y/n) yywho is the next child? Linnea Who is Esther’s next child? Annika
How many children does Elizabeth have
Does Linnea have any children? (y/n) y Who is the next child? Raylee Who is Elizabeth’s next child? Annie
Does Raylee have any children? (y/n) n How many children does Megan have? 0
Does Linnea have any more children? (y/n) n . X
Does Kristen have any more children? (y/n) y Who is the next child? Chelsea How Tany.chlldren does Flnnea have?
Does Chelsea have any children? (y/n) y Who is the next child? Emma Who 1s L1nn§a’s next child? Raylee
Does Emma have any children? (y/n) n How many children does Chelsea have?
. Who is Chelsea’s next child? Emma
Does Chglsea have any more ch%ldren? (y/n) n How many children does Annika have?
Does KrlsFeh have any more cthdren? (y/n) n How many children does Annie have? ©
Does Patricia have any more children? (y/n) n How many children does Raylee have?
How many children does Emma have? 0

n

1

?

1

0

0

Chelsea

&)

Emma

3

2

1

1
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Ordered Unordered
Stack Keys _ Set
LIFO Key-value Binary
EEEESS associations membership
Random . Lookup by index Lookup by key
access _ List Map
Any-type Enumerated
FIFO values membership
access
Queue Whole-numberBag
values
9 N\ /91

List Stack Queue

Set Map Bag
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2.1 Array-based data structures

internal %
unused
size

internal Bé| 4|12| 7| 3|22|
size

internal Bé| 4|12| 7| 3|22|
we [5]
VooV

emp [ [ alv2] 7] o[z~ I

internal B—>| 4|12| 7| 3|22|43_
unused
size El

internal Bé| 4|12| 7| | 3|22_
unused
size lzl
internal Bé| 4|12| 7|17| 3|22|43-
unused
size




12 CHAPTER 2. DATA STRUCTURES

Call to add() 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Array length 1 2 4 4 8 8 8 8 16 16 16 16 16 16 16
Writes perfformed 1 2 3 1 5 1 1 1 9 1 1 1 1 1 1
Running total 1 3 6 7 12 13 14 15 24 25 26 27 28 29 30
4
push(14)
push(6) 31
push (15) 15 4] 6[1s[a1] « R
push(31) 6 unused
push(4) 14
2.2 Linked data structures
tail’:} T
i [ T
: ()
i [ T

16
16

31

17
32
17



2.3. DATA STRUCTURES BUILT FROM ABSTRACTIONS

ArrayList LinkedList
add() O(1) (amortized) 0(1)
set() 0(1) ©(n) (worst and expected)
get() 0(1) ©(n) (worst and expected)

(n)
(n)
remove() ©(n) (worst and expected) ©(n) (worst and expected)
insert() ©(n) (worst and expected) ©(n) (worst and expected)

push(14) 4

Push () ¥ N
push(15) 15 @ 31 15 6 14 |
Sush(31) . NYNGY NG NG/
push(4) 14

2.3 Data structures built from abstractions

tlgl | il ---’a‘f‘k‘b‘g‘l‘c‘h‘m‘d‘i‘n‘e‘j‘o‘...




14 CHAPTER 2. DATA STRUCTURES
~ Abstract
data type
. Advanced
rrrrrrrrrrrrrrrrrrrr i data structure !
AbStI’aCt E B LT o !
data type : i Abstraction :
""" Simple . simple
data structure .+ data structure )
front back
enqueue(5) remove()
enqueue(12) enqueue(14)
enqueue(9) enqueue(3) - 9/21114| 3
enqueue(21) remove() unused unused
front back
enqueue(8) enqueue(11) l/ i/
remove () remove () _14 3| 8171123
enqueue(17) enqueue(23) unused
back front
enqueue(25)
enqueue(6) H 14‘ 3‘ 8‘ 17‘ 11‘23‘

unused




2.3. DATA STRUCTURES BUILT FROM ABSTRACTIONS

" Queue
~ ADT

Array queue
data structure |

¢ Ring buffer @
. abstraction : |

Array |

(Does it live in water’?

LN

(Does it have teeth’?

(Does it have feathers’?

|\

X

alligator jellyfish ostrich giraffe

00 00 50 00 9.0 entries | 1.0 [20[3.0[40[50]60]70]80]90 ]|
1.0 3.0 00 0.0 0.0

00 40 60 7.0 0.0 rows | 1 [ 4]1[2[0]2]2[3][0 |
00 00 00 80 00

20 00 00 00 00) costarts| 0] 2[4 ]7 ]38 |

15



16 CHAPTER 2. DATA STRUCTURES

2.4 Data structures adapted from ADTs

. Target
Client <<interface>>

newQperation()

implements

Original

Adapter
—internal:Original >

oldOperation()

newOperation() O-{----------

internal.oldOperation();

Queue Stack
<<interface>> <<interface>>
enqueue(E) push(E)
front() top()
remove() pop()
iISEmpty() iISEmpty()

£ £

o /L N\ o/ N\

[oR Q.

E . E

List
ListQueue <<interface>> ListStack
— internal:List ———>| add(E) — internal:List
enqueue(E) © | set(int,E) push(E) O
front() 3 get(int) top()
remove() 3 remove(int) pop()
isEmpty() 3 insert(int,E) isEmpty()
: size()

internal.add(item);
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Alice | x2341
Bob |x5173 =0 @ — e — - S
c ‘Alice :© Bob : :Carol : Dave : Eve
arol | x3301 X23410 I X6173 | x3301 | X743 . x3548.
Dave | x7443

0 1 2 3 4
Eve x3548

Bag set

data structure

: Set .

ADT

Map bag
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2.5 ADTs and data structures in other languages

title author pages
o1 0 50 72 76
capacily [z]nle]| [afelnlefsfaleer  [v]ilefgfi]1]--- [267 |
A
size 1
°l ] f
internal  ——
16
title author pages
o1 0 50 72 76

Ll e
N S

tail ‘K} / 74‘_{

16T
size | 0 3 16
24
title author pages
0 50 72 76
[r]nfe] [ale[nfesfaf-rr [v]ifrfo]s]r]--- [267 ]
add °| |
set & |

get 16 . capacity
size 32 . size

internal

author pages
50 72 76
v ifrfg|i[a]e-- [267 ]

add

set 8

get 16

insert 24

size 32

data 4©

48




2.6. ADTs AND DATA STRUCTURES IN OTHER LANGUAGES

title author pages node.next
0 50 72 80 88
[r]nle] [ale[nfesfal-se [v]ifefgi[r]--- [o67] | ——H
o
head
s
tail ]
16 (1]
size | |
24
Sized Container Iterable
_len_ () __contains__() __iter_ ()
\
Collection
\ { |
Sequence Set Mapping
__getitem__() __getitem__()
MutableSequence MutableSet MutableMapping
__setitem__() add() __setitem__()
__delitem__() discard() __delitem__()
insert()
append()
list set dict

19



20 CHAPTER 2. DATA STRUCTURES

2.6 Programming practices

01 2 3 456

0 1 2
9@11

18 19 20

3 5
12 18 14

21 22 23

27 28 29
36 38

45 46 47

30 371 32
39 41

48 49 50

54 56
63 65

72 73 74

0O NOoO O h WD = O

57 59
66 68

75 76 77

78 79 80

Queue
<<interface>>
enqueue(E)
front()
remove()
isEmpty()

A

implements

List
<<interface>>

add(E)
set(int,E)
get(int)
remove(int)
insert(int,E)
size()

implements

LinkedList

extends

[

ListSubclassQueue

front()
remove()
isSEmpty()

2.7 The road ahead

2.8 Chapter summary

enqueue(E) O

internal.add(item);

Stack
<<interface>>
push(E)
top()
pop()
isSEmpty()
g
|
ListSubclassStack
push(E)
top()
pop()
isEmpty()
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Case studies

3.1 Linear-time sorting algorithms

Alice | Bob
2 4

Carol
2

Dave
1

Eve

1

Fred
3

Georgia
4

Henry

Ida

Jack

Karen

[ ] 31 81

62

487

a7t 248 )

-
(110 174 106 147)

599 549
752 725 785

—>(940 971 972 932 968 )

3.2 Disjoint sets and array forests

21




22 CHAPTER 3. CASE STUDIES

Georgia— T t/ Ralph
ren
Carol N Olivia
ate ___Karen Dave —
Eve / \ / \ . Yvette
Ida—Jack \Zeke Alice Queenie ‘
T Xavier Moi
i ra
VICk\Wendy Henry Fred Larry
Bob Pete ___—Sarah
Ursulla

Initial: 0]0]6]6/01610]0
wion(3, 5) ©WEEWEE
wion(1, 77 @0 DEEs)WE
wion(2, 3) @0 D 3 9
wion(o, 4) (© 40 7z s (g
wion(o, 3) (0 4 2 3 5)(1 7)(¢)
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(0]

1 2

3 4 5 6 7 8 9

ADT

Array forest
data structure

Array

DisjointSet
«interface»

find(int)
union(int, int)
connected(int,int)

count()

findAll(int)

implement}

X

BruteForceDisjointSet

See Exercise ??

ArrayForestDisjointSet

parents: int[]
finder: findStrategy
unioner: unionStrategy

find(int) o
union(int, int)  o-
connected(int,int)
count()

findAll(int)

3.2. DIS]OINT SETS AND ARRAY FORESTS 23
/OR T ’ /1’1\
12 3‘ 5 T 10 112
4 i /14\
13 15
10 11 12 13 14 15
FindStrategy
«interface»
find(int)
H
PlainFind ‘ ‘ CompressingFind UnionStrategy
«interface»
union(int, int)
g
finder.find(p); [ LazyUnion | [ AggressiveUnion | WeightedUnion
sizes: int[]

unioner.union(p,q);
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Initial state o 1 2 3 4 5 & 7 Final state
After union(0, 1) /1 2 3 4 5 6 7

0
After union(1, 2) /2 3 4 5 6 7

1

/

0
After union(2, 3) /3 4 5 8 7

2

/

1

/

0
Initial state o 1 2 3 4 5 & 7 Final state

After union(@, 1) ° 2 3 4 5 & 7

After union(1, 2) a

After union(2, 3) 0o 4 5 & 7
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3.3 Priority queues and heaps

' Priority queue
~ADT

Sorted list
. data structure

| Sortedlist !
. abstraction .

o lefs[7]2]a]1]s]e]o]

lofofslzlefal [sle] [ [ [1] [ [of
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Priority queue’
~ ADT

1. Heap s
. abstraction .

Array




@ @ [17]16] 11]6 [3 [ 5 [22]23] 2] 27]

@ @ [11] 8] 3]e [16]17]22] 23] 24] 27]

@ @ | 6] 3] 8] 11]16]17]22] 23] 24] 7]

3.3. PRIORITY QUEUES AND HEAPS

@ @ [22] 17] 11] 16] 3] 8] 6]2a]24]27]

@ @ [16] 8] 11] 6 [3 [17]22] 2] 2] 27]
@ @ | s] 6] a[11]16]17]22] 23] 24] 27]

@ @ | 3] 6] 8] 11]16]17]22] 23 24] 27]
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PriorityQueue

<<interface>> Heap
ISEmpty() internal: E[]
Ir,r;‘sai,(S(E) heapSize: int
extractMax() compy: Comparator<E>
contains(E) add(E)
increaseKey(E) decreaseKeyAt(int)
decreaseKey(E) decrementHeapSize()

implements

findKey(E)
get(int)
heapSize()

‘ ‘ ‘ increaseKeyAt(int)

isEmpty()
isFull()

‘ ListPriorityQueue ‘ ‘ SortedListPriorityQueue ‘ ‘HeapPriorityQueue % set(int, E)

swap(int, int)

|28]26]20]15[24[19] 7 [ 8[3 [ ]

%) |20]26]28[15]24[19] 7 [ 83 [ ]



3.4. N-SETS AND BIT VECTORS 29

3.4 N-Sets and bit vectors

static int m(int a, int b) {
int c, d, e;
c =5;

d =
if (a < b) { e =
d = b;
e = a;
}
else {
d = a;
while (d < b) {
e =d;
d += 10; return ¢ + d + e;
}
}

return c + d + e;

{a,b}
c = 5;
a <b

{a,b,c}
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{a,b}
c =5;
a <b
{a,b,c}
{a,b,c} {a,b,c}
e - a {a,b,c,d}
{a,b,c,d, e} ‘

{a,b,c,d}

e = d;
d += 10;

{a,b,c,d, e}

{a,b,c,d}

return ¢ + d + e;

| Bitvector | |
. ._abstraction : |

Array

sparse ’1‘3‘ ‘4‘ ‘ ‘0‘5‘

dense (6 [0 J12]1 [3 |7 ] [ |




implements

LinkedList

I
I

3.5 Skip lists

Set

<<interface>>

implements
extends

L%

List .
<<interface>> ﬂLISTSet

/

extends

NSet

<<interface>>

AN

implements

NaiveNSet

| BArrayNSet | | BitVecNSet

3.5. SKIP LISTS

‘FOX ‘RAM ‘CAT ‘DOG ‘HAT ‘BAT ‘PIG ‘EWE ‘EEL ‘SOW ‘COW ‘DOE ‘KIT ‘PUP ‘KOI ‘BUG ‘FLY ‘ANT ‘JAY ‘TOM ‘

(O (00 {07} (500} A7) (007} (B0} EEL) 50500 508 67 (0P 0 ) (i} oy (v} 700

‘ANT ‘BAT ‘BUG ‘CAT ‘COW ‘DOE ‘DOG ‘ EEL ‘ EWE ‘ FLY ‘ FOX ‘ JAY ‘KIT ‘ KOI ‘ PIG ‘ PUP ‘ RAM ‘SOW ‘ TOM ‘ RAT ‘

(O ) 005} ) 50008 0001~ 0 27

07 (k0 Y0 ) e {50

ANT BAT BUG

o
o]
o
m
m
~
m
=
m
m
b
T
-
o
X
<
=
<

=

(O
(ol (e e

]

(oo e e

BAT BUG CAT

o
o)
DOE DOG EEL ; FLY FOX- JAY % L@}% P RAM RAT TOM
o
/)
DOE DOG EEL 7>{EWE FLY FOX KOl RAM RAT TOM

31
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o o !
o /) o) 1
.9‘ BATJ%.%BUG CAT DOE DOG EEL />{EWE FLY FOX JAY —=>{KIT KOI PIG PUP -={RAM RAT @ TOM{—H
o o ,
o) ) ) i
—
—
ANT BAT BUG CAT DOE DOG EEL +>{EWE FLY FOX JAY > KIT KOI PIG PUP +={RAM RAT TOM{—H
o () )
) ) ) i
>
BAT BUG CAT DOE DOG EEL 4>{EWE FLY FOX JAY 5 KIT KOI PIG PUP +—>RAM RAT @ TOM+—+
o o !
) ) ) 1
— — —
ANT BAT BUG CAT DOE DOG EEL 7=>{EWE FLY FOX JAY > KOI PUP +—={RAM RAT @ TOM{—H
|
" — —

S m=s

BAT CAT 5

CUR

(O
DOEJ>(Dog)

(G

G

o o 653

PU
—

o

W Wr=mwcr
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|
(G (G i

(—\
e
() ]
ANT J->{BAT J->(BUG } >{CAT DOG |>{EEL §->{EWE
ﬁ
—
) ]
ANT J{BAT J>(BUG}>{CAT J->{cow}~{CUR }=( DOE} >{D0G | 5| EEL | > EWE
~—
ﬁ
—
) ]
[DoE) EEL J>{EWE

DOE
ANT J>{BAT CAT CUR J>{DOE }-~{poe
OE

ANT 1| BAT }>[BUG }->{cAT CUR—%’%EEL< EWE

3.6  Chapter summary
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Graphs

4.1 Concepts

https://www.dupageforest.org/places-to-go/forest-preserves

ST T ST Pt
foods). T
! A | Wayne Woods
N ! el B T Timber Churchill
e Ridge ™ e
| r. Kline Creek —————Woods
| Branch Farm
- Sl Timber _  Red Hawk Black ’(Ep /
1 "*Rldgg_ﬁq%;_k’ mfl:ghw
A /)]
. G West Chicago ————— Winfield
D og DR g g g Prairie Mounds —
2 e . Churhil “ Lincoln Marsh
) Mounds Maveh.
" Wast DuPage
T
Blackwell ~__StJames
Farm Herrick Lake  —— panada
Ila“‘nkw-ll . .
] 7 Big Woods Warrenville
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https://www.dupageforest.org/places-to-go/forest-preserves
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Milton Bradley. Chutes and Ladders. 1974 The modern pub-

lished version is based on the ancient Indian game Moksha
Patam.
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para‘“" Vronsky e Kitty
. . S/
Karenin —*%°® _Anna __ o Levin §
S, ie” 3
spouse
Oblonsky Dolly

Chess knight from the Free Icons Library, http://chittagongit.
com/icon/knight-chess-icon-16.html


http://chittagongit.com/icon/knight-chess-icon-16.html
http://chittagongit.com/icon/knight-chess-icon-16.html

4.2. CONCEPTS 37

ISP Modem Firewall Router
WiFi
Server Printer Desktop Desktop Desktop
H H
\/
H C H
NSNS
VAN
H—0—H o _~c "o H H H H
Water  Carbon dioxide  Propane
Unknown genetic cause?
Unknown common
phy3|olog|cal cause?
Cleft lip and | t P|tU|tary abnormality Severe multiple
€t lip and palate food allergies

Growth hormone

deficiency
Eustachian dysfunction

Frequent ear infections Bad eating habits

Speech delay Small stature
An undirected graph A directed graph A directed graph A simple

with parallel edges with a self-loop directed graph
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4.2 Implementation

071\

Pratt’s Wayne Woods

NS

Timber Ridge
Kline Creek Farm
Churchill Woods
West Chicago Prairie

Winfield Mounds

m —12

10

name [ V[T LTI T1]

parkinglots  [3[2]1[3]z]o[1]3]2]2]2]0o]2]2]1]

visited [r[r[r[r[r[r[r]r[r[r]r[r[r]r]F]

wroteAlgoComAt  [rlr[r[r[r[r[r][r[r[r[F[r[r][T][F]
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4.2. IMPLEMENTATION

_ Graph ADT

_ GraphADT
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0o 1 2 3 4 5 6 7

o (o] oo (o) 21 oo (o] oo 17
1|40 o 8 o 37 00 o 00
2|63 ©© 0 19 12 00 ©© 00
3 (o] oo 19 (o] oo (o] (o) 13
4 oo 22 (o9} oo o oo oo oo
5|0 o 14 00 29 0 00
6|0 o© o 00 353 © 0 ®
7 oo oo (e¢] oo o 51 9 o

4.3 Traversal

Initially the starting point, 0, is dis-
covered and in the worklist—the top

| /k :
T\Q of the DFT stack and the front of the
K 5\ > BFT queue.

7 CL@ 8

In either algorithm, 0 is removed

=)

from the worklist and its adjacents—

N w

all of them newly discovered—are
added to the worklist. For DFT, 3 is
at the top of the stack, but for BFT, 1
is at the front of the queue.




=N o

=N ©

=N~

o

=
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DFT pops and visits 3, whose ad-
jacents are 0 and 6. DFT ignores 0
because it’s already discovered, but
pushes 6. BFT removes 1, visits it,
and enqueues its adjacents 4 and 5.

DFT pops 6. There is one adjacent
vertex, 8, and since it’s undiscovered,
it is pushed. BFT removes 2. The
adjacents 1 and 5 are already discov-
ered, but newly discovered adjacent
6 is enqueued.

DFT pops 8, which is adjacent to

3 and 7. Of them only 7 is newly
discovered, and it is pushed. BFT
removes 3, but its adjacents 0 and 6
are already discovered. Nothing is
enqueued.

DFT pops 7 and discovers the ad-
jacent 5, which is pushed. BDF
removes 4. The only adjacent, 7, is
newly discovered and enqueued.

DFT pops 5, but its only adjacent,

8, is already discovered. This termi-
nates a path from 0 to 5 explored
over the previous five steps. BFT also
removes 5, but here the adjacent 8

is newly discovered and enqueued.
Now BFT has discovered all vertices;
its remaining steps empty the queue.
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7

-

DEFT effectively backtracks back to
vertex 2, which is popped. The adja-
cent vertices 1, 5, and 6 are already
discovered, so nothing is pushed.
BFT removes 6, but its only adjacent
8 is already discovered, and nothing
is enqueued.

DFT pops 1, which has adjacents 4
and 5, and pushes the newly discov-
ered 4. DFT has now discovered all
vertices. BFT removes 7, but its only
adjacent, 5, is already discovered.

DFT pops 4, and BFT removes 8.
Both worklists now emptied, the

algorithms terminate.
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v
v

def traverse(g, s, worklist, f):
parents = [None for v in range(g.num_vertices())]) cV
[worklist.add(sﬂ
! parents[s] = s
while(not worklist.is_empty(D: o(V+1)
3V (v = worklist.remove())
f(v)
for(u in g.adjacents(vD: cas(V +E)
if( parents[u] == None): csE

(V—1) parents[u] = v
ce(V —
‘ worklist.add(u)
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D S B

B

7

The call to visit the starting The loop over 0’s adjacents The consequent loop over 1’s

point is on the stack, a root of discovers 1 which it visits, re- adjacents results in a call to

visit 4.

subsequent calls.

cursively calling the function.

EEERT
EEEREL)

...and from 5 we discover 8.

RN
C-RNO®OWO .
R

From 8 we discover 3. By this In the loop over 3’s adja- Now 6’s only adjacent, 8, is

point we have seven calls to cents, 0 is already discovered  already discovered. The call
to visit 6 returns, and 6 is

finished.

depth_first_r() that are ac- and so we skip it, and call
depth_first_r() on the

newly discovered 6.

tive. The loops over adjacent
vertices in all the calls below
the top are paused.

0

EEEREE)
EEERE
RN

7 8

The loop over 3’s adjacents
resumes but is immediately
complete. The call to visit 3
returns, and 3 is finished.

The loop over 8’s adjacents
resumes, but since 7 is al-
ready discovered, the call
to visit 8 returns, and 8 is
finished.

Similarly the call to visit 5
returns, since its loop ter-
minates immediately after
resuming. 5 is now finished.



5
4
7
The call to visit 7 also returns

immediately after resuming.
7 is now finished.

VA

8

Next depth_first_r() is
called on 0’s adjacent 2. All
of 2’s adjacents are already

discovered, so visiting 2 re-
sults in no more recursive

The recursion winds its way
back to the call to visit 1.

VA

Back at 0 again, its remaining

adjacent 3 is already dis-
covered, so again no more
recursive calls are made.

4.4. TRAVERSAL

e

The call returns, and 1 is fin-

45

ished. Now we're back to the

call visiting 0.

7 8
All recursive calls have re-
turned. We re-highlight all
the edges that were followed
so we can see the complete
traversal tree as captured by
the parents list

calls.
[K\ 6
=,
< 9
=
- — =y y
5 10




46 CHAPTER 4. GRAPHS

4.4 Minimum spanning trees

Total weight 35 Total weight 29 Total weight 21
1 4
1 3 5
0 6
8 : ? 10
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48 CHAPTER 4. GRAPHS

def mst_kruskal(g):
Gomponents = DisjointSet(g,num,vertices())) o(V)
O(E) @dges = undirected,weighted,edges(g))

(counting,sort(edges, lambda e: e[2])) O(E)
o(1) @ = set())

for Qv,u,w) in edges): Q(E)

if@ot components.connected (v, u)): O(ElgV)
O(VigV) (components.union(v, u) )

A.add((v, u))) o)
return A

. . ) Suppose 0 is removed from the worklist.
Initially all vertices have no prospective par- Relaxing its edges gives vertices 1, 2, and 3
ent and infinite distance bound.

smaller distance bounds and 0 as prospec-
tive parent.



@)

® O,
Having least distance bound, 3 is removed
from the worklist and edge (0, 3) is added
to the tree. Relaxing 3’s edges results in
new distance bounds for 2, 4, and 5, and

3 is their new prospective parent, but no
change for 1.

Vertex 5 has least distance bound, and its
prospective parent 2 becomes its definite
parent in the tree. Relaxing edges (5,4) and
(5,6) makes 5 the prospective parent of 4
and 6.

2\
1 (&) 4

Vertex 6 is removed from the worklist and
edge (4,6) is added to the tree. All of 6s

adjacents are already connected—no further

changes.

4.4. MINIMUM SPANNING TREES 49

With distance bound 3, vertex 2 is next out
of the worklist. We relax the edge (2,5),
with 5’s prospective parent changing to 2.
The other vertices adjacent to 2 are already
connected.

With distance bound 2, vertex 4 is next. The
edge (4, 6) is a shorter edge to connect 6 to
the tree than (5,6), and so 4 becomes 6's
prospective parent.

The last vertex in the worklist is removed,
and edge (0,1) is added to the tree. The
algorithm is finished.
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def mst_prim(g):
parents = [None for v in range(g.num_vertices())]
distances = [sys.maxint for v in range(g.num_vertices())]
pg = PriorityQueue(g.num_vertices(), distances)
o(1) (A =set) )
while(hot pq.is,empty()): Q(V)
O(VigV) <p = pq.extractﬁmax()A>
if parents[v] == None :
assert len(A) == 0
else :
A.add((parents[v], v))
for(u in g.adjacents(v): o(f)
if ((pg.contains(u) and
(parents[u] == None or g.weight(v, u) < distances[u]);]: O(E)
parents[u] = v
[gistances[u] = g.weight(v, u) :

(?q.increase,key(u)A> O(ElgV)

(V)

return A
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9
1
Relaxing edge (0,1) discovers a distance bound
for vertex 1 and sets 1’s prospective parent to 0.
(31 13 4 6 7
;
0
9
/
) 2 1 5 1 s
We relax edge (0,3).
(31 13 4 6 7
3 4 3 1
©® 1
0 9 3 2
6 5 9
1 10 5 14 f
s

M2 1 5(2) 1

Relaxing edge (2,3) does not find an improve-
ment for vertex 3, but relaxing edge (2,5) sets 5’s
distance bound to 2.

(31 13

N

@ 2 1 5(2) !
We relax edge (3,5) to no improvement. We also
relax edge (3,6).

8

9
1
OFr 1 g 1 8
We relax edge (0,2).
(3) 1 13 4 6 7
3 4 3 1
©® 1
0 9 3 2
6 5 9
1 10 5 14 f
;
9

Relaxing edge (3,4) discovers a shorter path to
4. We update distance bound and prospective
parent.

(31 13

@ 2 1 5(2) 1
We relax edge (4,7) to find distance bound 19 for
vertex 7.



M) 2 1 5 @ 8 (3)
Relaxing edge (5, 6) provides no improvement for
vertex 6, but relaxing edge (5, 8) finds a distance
bound of 3 for vertex 8.

(31 13 +@ 7 (5)

) 2 1 5 @ 8 (3)
Relaxing edge (9,7) finds an improvement for

vertex 7. This completes the first round of relax-
ations.

4.5. SHORTEST PATHS 53

JO)
Relaxing the outgoing edges from vertices 6 and 7
finds no improvement. We relax edge (8,9) to set
9’s distance bound to 4.

@1 13 7 (5)

The second round of relaxations repeats the entire
process, but the only improvement is found by re-
laxing edge (7,6). Vertex 7 is 6’s new prospective
parent.

A third round of relaxations discovers a shorter
path for vertex 4 when edge (6,4) is relaxed.

A fourth round of relaxations discovers no im-
provements. We have converged on the shortest
path tree.
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Vertices 1, 2, and 3 each have only one outgoing
edge. Their distance bound is co when those
edges are relaxed on the first round, which
doesn’t change the initial distance bounds and
parents of vertices 0, 1, and 2. When the outgoing
edges of 4 are relaxed, 4 becomes the prospective
parent of each of the other vertices. That results
in a correct distance bound for vertex 3, but no
others.

3, @

With 2’s correct distance having been discovered
on the second round, relaxing (2,1) reveals 1's
correct distance on the third round. Unfortu-
nately, the third-round relaxation of edge (1,0)
has already happened, and so ...

Relaxing edge (1,0) on the second round reveals
a path of total weight 9 +1 = 10 to vertex 0. This
is worse than the distance 8 already known, so
there is no change to 0. Similarly, the relaxation of
(2,1) effects no change. But relaxing edge (3,2)
uncovers the shortest path to vertex 2.

...it is not until the fourth round that 1’s correct
distance bound allows us to find the correct dis-
tance for 0 when (1,0) is relaxed.
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Uy

u
uq 5

%

Initially all vertices have infinite distance except After relaxing 0’s edges, 0 is the prospective par-
the source, 0. ent of vertices 1, 2, and 3, which now have finite
distance bounds.

9
1 1
2 1 502 8 8 (3)
Vertex 2 has lowest distance bound. Relaxing Vertex 5 has lowest distance bound. We relax its
(2,3) doesn’t change 3, but relaxing (2,5) sets 2as  outgoing edges, and now 6 and 8 have finite dis-
5’s prospective parent. tance bounds.
1 13 4 6 7 1 13 4 6 7
3 4 3 1 3 4 3 1
©, 1 ©) 1
0 ] 2 0 9 3 2
6 5 9 6 5 9
1 10 5 14 f 1 10 5 14 (@
2 1 5 o 8 (3) 2 1 5 1 8
Vertices 1 and 8 are tied for least bound. Let’s Vertex 8 has lowest distance bound. Relaxing
break the tie by relaxing 1. Vertex 4 now has dis- (8,9) sets 8 as 9’s prospective parent. Vertex 9 has

tance bound 19. distance bound 4.
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3 ® 4 3 1
1
0 9 3 2
6 5 9
1 10 5 14 4
T2 1 5 1 8

Vertex 9 is next, and we relax its outgoing edge Vertex 7 is next. Relaxing the edge (7, 6) reveals
(9,7). Vertex 7 has distance bound 5. a shorter path for vertex 6. We update distance

bound and prospective parent.

Next we relax the outgoing edges from 6. This finds a shorter
path to 4. We still need to relax the edges from vertices 3 and
4, but they effect no change. With the priority queue empty,
the algorithm terminates.

u 30 t
s
s
X s _ -7
s _ -
-
N - -
\ 5
\ ad
\ z
\ s P
s~
R s -
L
o . T - - -
7
¥
u 35
u 23

4.6 Chapter summary
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Search trees

5.1 Binary search trees
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Level Nodes
0 1
1 2

H~ W D
—
o 2 ®



6,0,5,1,4,2,3

height 7
total depth 21
ANI 4

0,3,52,6,1,4

() height 4
total depth 14
OO P

ANI 3
© © ©

1,6,5,2,4,3,0

height 6
total depth 16
ANI 3.29

5.2 The balanced tree problem

5.2. THE BALANCED TREE PROBLEM

3,1,50,2,4,6
(s)

(4 .
height 3
@ @ @ (@ total depth 10
ANI 2.43

4,2,5,3,0,1,6

height 4
total depth 11

1,2,5,4,3,0,6

height 5
total depth 14
ANI 3

5 B

61
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(") — (2
o Y
O

OWNO]

B Y o« i

Left rotation

(1) (1)
° o
) ) ONG
The call to put() starts at the  Descending to the right, Descending to the left, put()
root. put() is called on H. is called on E.

The process descends to the G is inserted as F’s right child. The call to put() on E re-
right again with another re- After checking for imbalance, sumes, checks for imbalance,
cursive call to put(). the call returns. and returns.

E@

Back at H, suppose the imbal- A left rotation is performed This is followed by a right
ance at this subtree exceeds about H’s left child. rotation about H. That call to
acceptable levels. put() returns.



Node

3%

Map

<<interface>>

implements

BSTMap<K.,V,I>

The call to put() on the root
resumes, checks for imbal-

ance, and returns.

5.3. AVL TREES 63

Balancer<K,V,I>
<<interface>>

<<interface>>

implements

RealNode
key:K

value: V

left, right: Node

balancer: Balancer
root: Node

9

putFixup(Node): Node
removeFixup(Node): Node
rootFixup(Node)

newinfo(Node): |

Nodelnfo

<<interface>>

implements

info: |

5.3 AVL trees

recompute()

AVLBalancer

implements

‘ AVLInfo ‘

‘ RBInfo ‘

[0]

implements

RBBalancer

TradRBBalancer

LLRBBalancer
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-1
: &
[0]
OO,

wrong e 2]

[1]6
©® (o)
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[-2]

/@) (h+3) [oor1]
e (h+2 or h+3)
) \
o [-10r0]

Y
(h+2) (h+1)
rotate [-10r0]
(h+1 or h+2)
B Y
(horh+1) (h+1) o B
(h) (hor h+1)

(h-1orh) (h-1orh)

Right-Left:
[-2] [-2]
h h
( )oc 11 ( )oc
(h+2)
rotate
[-1orOort \ (h) (h-1orh) [-10rQ]
C 8 p
(h+1)
fall
(h-1orh)B y (h-1orh) through (h-1orh) y 5 (h

[-2]
(h+3)

[0or1]
(h+2 or h+3)

[-2 or -1 or 0]

[-1or0ori]
(h+1 or h+2)

Right-Right: rotate

(h—1orhorh+1) B Y
(h)y (h-Torhorh+1) (h-1orh) (h)

(h-1orh) v § (h)
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rotate )

&

(h+1)

) (22) (h-1orh) (h)

o o
X o

Before recursive call on right child After recursive call on right child

A1 AZ

A, Ay As
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5.4 Traditional red-black trees

S e e

After the initial put we have A second put, with a key less ~ Similarly, a put with a key

one node, which we paint than the root, is inserted as greater than the root results
black. a left child and leaf. New in another red leaf. The entire
leaves are red. tree has black height 1, with

a “black level” and a “red
level.”

Putting a new minimum key, ~ We fix this by pushing the The tree has grown. We rec-

B, entails inserting a red leaf ~ redness of the C-E level up. ognize this by blackening the

off the C node. This incurs a root, which increments the

double-red violation. entire tree’s black height.
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g/'s ole o e

Putting yet another new min-  Instead, we rotate about C. ... until we recolor. Nodes
imum key, A, also incurs a The result is more balanced, A, C make an incomplete red
double-red violation, but this  but not a legal red-black level.
one cannot be fixed by mere tree. ..
recoloring.
1
- 1
0 1 0
o @
0
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s
rotate

—
redden C
blacken B <4
v
o B ¥ 8

Left-left red uncle

redden C
blacken B and D

Left-right black uncle

/ Y

rotate
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Left-Right Red Uncle

redden C

—_—
\ blacken A and D

Left-Right Black Uncle

rotate left about A
fall through

Left-Left Red Uncle

Left-Left Black Uncle

rotate right about C

\ s redden C
blacken B

redden C
blacken B and D
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Initially the tree has black
height 3. We can delete a red
leaf like the A node...

Now the node D has an in-
consistent black height—0

on the left and 1 on the right.

This needs to be fixed.

... without any violations to

the tree. Similarly, removing
the key B means replacing
that key with its successor, C,
and deleting that successor
node. Since that happens to
be a red leaf. ..

Since D’s child with greater
black height is itself black
and has no red children, we
can reduce its black height by
reddening it. D’s black height
is consistent, but it has de-
creased. Its parent F now has
inconsistent black height—1
on the left and 2 on the right.

...that deletion also incurs

no violation. But suppose

now we remove key C, whose
node is a leaf but is black.

A left-rotation about F and
appropriate recoloring pro-
duces a replacement subtree
rooted at H that not only has
a consistent black height but
also a black height equal to
that of the subtree it replaces.
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o o

Left red.
x (h+1) Y
blacken A
(h-1) \ 0 () \ 0
/ Q AN / /< ; N\
[ B Y 3 o B Y 3
Right red.
X
rotate left about B fixup B
> AN
d
(h)
(h-1) ()
/
(h-2)a ph-2 (v 50 (1) )

fixup C



Right-right red.

‘ X

rotate left about B

5.4. TRADITIONAL RED-BLACK TREES

blacken E
color switch B and D

(h-1) (h)
h2 hZ}3 (h1) (h-1)

€
(h-1) (h-1)

Right-left red.

rotate right about D

e

(h-1) ) (h-1)
/

h 2)  (h- 2 (h-1) (h-1H oc(h_z)

N\ N\
Y 5 ¢ 4
(h-1) (h-1) (h-2) (h-2)

(h- 1> (h-1) (h-1) & (h-1)

/

(h2

rotate left about B

—»
C gets B’s color

blacken B ) "
Y Y he)d
(h-2) (h=1) (h) (h=1) (h-1)  (h-1)
s /
— o h-2) €
(=1) (h-1 (h-2) g (h-2) h-2)
(h-2) & ¢ (h-2

All black.
@ * redden D G ’
T, )
(h=1) (h) (h-1) (h-1)
/ /
o B o B
(h-2) (h-2) (h,1)= E(h-u (h-2) (h-2) <h71)a a(h—ﬂ
2" 0-2° “ha Sh2 h-2" (2% “hz) ©hez)

73
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Black height Height  Nodes

/ 1 2 2

2 4 6
3 6 14
4 8 30

5.5 Left-leaning red-black trees
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P e e

After the initial put we have A second put, with a key less A put with a key greater than

one node, which we paint than the root, is inserted as the root results in red leaf to

black. a left child and leaf. New the right. This is a right red
leaves are red. violation.

Since the red right child has The tree has grown. We rec- Putting a new minimum key,

a red sibling, we fix the viola-  ognize this by blackening the B, means inserting a red leaf

tion by pushing the redness root, which increments the off the C node. There is no

up to the parent. entire tree’s black height. violation.

Putting yet another minimum  Instead, we rotate about C...  ...and recolor, though dif-

key, A, incurs a double-red vio- ferently from a traditional

lation, which cannot be fixed red-black tree.

by recoloring.
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Both red
redden B
blacken A and C
o 8 o
Right red
rotate left about A
e EEEE——
o B gets A’s color v
redden A
N
B o 8

Left-left double-red

rotate nght about C
N
8 redden A
Y 3
o p

Right deficient, right red.

fiete

(h-1)y
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Right deficient, left red, left-right-left red.

rotate left about A rotate right about D
—_— R —
€ (h-1) €M1 blackenB
5 (h-1) ) o

(h-1)
-}

(h-1)B Y (h-1)

(h)

e (h-1)

(h-1)B v (h-1)

(h) o

Right deficient, left red, left-right-left black.

rotate right about C

- o
blacken A (h) (h)
(h=1) redden B

/ (h-1)
°
ﬁ (h-1)p Y (h-1)

-1) B

v (h-1)

5

(h-1)

Right deficient, left-left red.

rotate right about D

—_—
3 B gets C’s color
(h (h-1)  blacken A and C (h) (h)
Y (h=1) (h-1) @ B (h-1) (h-1)Y 3 (h-1)

(h-1)
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Right deficient, all black.

@ redden B
\a
(h) (h-1) (h-1) (h 1)
(het) Y (h-1) (h- 1 (h-1)
o (h-1) B hoty a (h 1) Bn-1)

Left deficient, left red.

blacken C

° o o o

%h-1)  B(h-1) (h-1)

Left deficient, right-left red.

rotate right about D G rotate left about B @
\ C gets B's color \
(h=1) (h) (h-1) blacken B

(h) (h)
AN / N Q

o v S
(2 (h-of (h=1), (h-1) b2 P2 ) (h) (h-1) (h-1)  (h-1)
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Left deficient, all black.

rotate left about B
_—

C gets B’s color
redden B

/

2 (2f ) (h-1) (h-1)

(h-2) @ B (h-2)
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Perfect

Worst

AVL

Red-black

Left-leaning red-black

o

g

Height: 4
Leaf percentage: 53.5%
Total depth: 49

Height: 15
Leaf percentage: 6.7%
Total depth: 120

Height: 5
Leaf percentage: 46.7%
Total depth: 51

Height: 5
Leaf percentage: 46.7%
Total depth: 52

Height: 6
Leaf percentage: 46.7%
Total depth: 53
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5.6 B-trees

T

Consider this two-three tree,  ...and the equivalent red-
which happens to have all black tree, with all black
two-nodes ... nodes.

If we insert the key A, it is Inserting the same key into
absorbed by the node con- the equivalent red-black tree

taining B. That node becomes  results in a new red leaf.

“°

a three-node.

If, instead, we insert the key In a red-black tree, the new ...but a left-leaning red-black
C into the original two-three  key is again inserted as ared  tree needs to be fixed up by a
tree, that new key is absorbed  leaf ... rotation and recoloring.

the same way.
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LT 4%

If we take either of the trees
from the previous set of ex-
amples and add the other
key—either C after A or A
after C—then the three-node
splits, resulting in two new
two-nodes, plus a key (and
value) sent up one level.

leaf on which all nodes are three-nodes.

|
[oh
OIONDI0IOI0I0

This two-three tree has a path from root to a

The key B is absorbed into
the root two-node, which
becomes a three-node whose
children are the new nodes
plus the old right child.

5 e

red nodes.

In a left-leaning red-black
tree, these situations are han-
dled by “pushing redness
up” to the B node.

o

°

The equivalent path in the equivalent left-
leaning red-black tree alternates black and

A call to put() with the new key F follows
that path, finding F’s would-be place in the
three-node with E and G.
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The three-node leaf is split. The “shards”—
two new two-nodes and a key (and a value)—
are sent up to the parent level.

The mid-level three-node that would absorb
the shards of the leaf-level split also splits,
and sends its shards up to the root.

The shards of the root-level split are assem- The left-leaning red-black tree that results

bled into a two-node that becomes the new from the same insertion has black height one

root. higher than before.
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(5 [ [12] 15] 28] 5] 25] 1 e[ sa] o] as[ ] se[ 3]

/ \ /\
/,, {\ ‘/ \ / \ / \:‘

AR AR

@@@0@@@@<@ OICIOROI0) @

,,>

‘ 31 |60 ‘88 ‘113‘141 ‘170 ‘195 ‘259‘228‘281 ‘313‘347‘372‘400‘436‘

‘2 ‘5 ‘7 ‘ 8‘11‘13‘14‘17‘20‘21‘23‘26‘27‘29‘30‘ ‘33‘35‘37‘38‘41‘42‘44‘47‘50‘51‘53 ‘54‘57‘58‘59‘




5.6. B-TREES

0 1 2 3 4 5 6 7 8 9 10 11

ANT | BEE | BUG |FLEA| FLY |GNAT|GRUBMITE MOTH NIT |TICK WASP|

0 1 2 3 4 5 6 7 8 9 10 " 12
Subtree with keys Subtree with keys Subtree with keys
less than ANT between ANT greater than WASP
and BEE
keys values children deg
eight bytes each position four bytes each position eight bytes each position
offset
instruct O 8 88 96 100 140 144 152 240 248 252
L [ Peee Ty Toloef e o] : HE
K> node for keys
greater than
WASP
node for keys
between ANT
and BEE
node for keys
less than
ANT
‘470 ‘977 1381 | 1859 | 2276 | 3190 | 3622 | 4149 | 4587 | 5063 | 5571 | 5994 | 6435 | 6888 | 7341
‘ 31 ‘60 ‘BB ‘113‘141 ‘170 ‘195 ‘259‘228‘281 ‘313‘347‘372‘400‘436‘
‘2 ‘5 ‘7 ‘ B‘ 11‘13‘ 14‘ 17‘20‘21‘23‘26‘27‘29‘30 ‘ ‘33‘35‘37‘38‘41‘42‘44‘47‘50‘51‘53 ‘54‘57‘58‘59‘
[2]5 ]9 2 is] [20[22]2s] | | [20]at[ss[ss] | [so]40]as]a7] | [s1]52[57] [ ]

[2]s [o fi2fis] [e0[2e[2s] | | [29]s1]ss]se] | [s0]ao]a1]4s]47] [51]52]57]

85
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EIEN

s [ []

9

[20[22[25] | | [29]st[ss[a6] | [a9]4041]4s]a7] [s1]s2]57] | |
10 12 i3
STelaE
l2[s[ | [ | fhoh2ha] [ | [20]22[2s] | | [29]3t]3a[s6] | [s0[40]41][4s[47] [s1]s2]57] [ |
PIERr
41
l2[s[ [ [ | folzfs[ [ | [eof22[2s] [ | [2o]3t]a[s6] | [efas[ar] | | [st]sef[s7] | |
[aofao] [ [ ]
26
[of17] T T ]
l2fs [ [ [ ] hohehs] [ | [eof2225] [ | [eo]3t[ssfse] | [so]ao] [ | | [ac]as[er] [ | [s1]se[s7] |

l2s [ [ [ | olhehs| [ | [aof22[es] [ | [a]st]sefse] | [asao] | [ | [s2fas]er] | | [s1]s2]e7]
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18 [32 [55 68 [s1 |89 08 [107[120131]143]158] 47 5568 |1 |89 |98 [107120]131]14]158]
lalp[v]o[elenfofo[u[alulv]  [ale] a s [se[¢[nfof [ x[a[u]v]
A47 B

Suppose that the shard key is 47 and that its T}.1e C.hﬂd it came. from, 7, is .deleted,. and 47
least upper bound is in postion 2 with its shard children are virtually inserted
' to make an overfull node.

18 a2 [47]5s]es]a1] | [ | [ | | 8o lesliorhaoiathaghiss] [ | [ | [ |
lafplals[afel] [ [ [ T[] [nlelofofafulv [ [[]]]]
That virtual node is split into two half-filled

nodes with key 89 in the middle.

18 [s2 |55 J6s J81 [9 |08 f107]120)131143]154] 18 |32 |s5 [6s |81 [s0]| 92 |os f107]120)131143]158]
lafp[vfs [elelnlol i wfafulv]  fofpfvlslelc] r & [of o[ x[afu]v]
92

r A
Suppose the shard key is 92 and that its

The child it came from, y, is deleted, and 92
least upper bound position is half the num-

with its shard children are virtually inserted

ber of keys. to make an overfull node.
18 [a2]s5 es[st]sa] | | | [ | | e2 o8 fto7f12ofistfiashssl | [ | [ | |
lofelvefafefefr] [ [ [ [ [ ) [afofefofafulv[ [ [[]]]
But forget about a virtual node—the real
node is split exactly in half, and 92 is the
shard key at this level as well.
18 [32 [55 |68 |81 |89 |98 [107[120/131]143]158] 18 |32 [55 |68 [s1 |89 |98 [107[120]131]143]158] 177
oo [ fs [ efefn]e] o] [ afulv] lafp lolo e cfnfol[x[afu] & z
177
E oz

Suppose the shard key is 177 and that it’s The child it came from, v, is deleted, and

the extreme case, greater than all of the keys 177 with its shard children are virtually

at this node. inserted to make an overfull node.

e [s2]ssles fs1fso] | [ | [ | | o8 [o7recistfragisaizz] | [ | [ | |
lafp [ola fefefn[ [ L[ [ [ lefelxfablefz] [ [ [ ][]
That virtual node is split into two half-filled

nodes with key 98 in the middle.
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5.7 Chapter summary

(1]
e (4)

(1]
@)




6
Dynamic programming

6.1 Overlapping subproblems

fib(6)
f|b(5)/ fib(ll)\
Xb( 3) f i b(3)  fib(2)

/|b 3) b(2) flb/2) fib(1) flb( fi (1)%(0)
fib(2)f4(l) fib(1) fib(0) fb(l) fib(0) flb(l)\b(O)

fib(1) fib(0)

}

-

C[14]1[3]
Cl[1l4]1[2] cl8]l2] Cclz2][2]
Cl14][1] Cl10]11] cr8lr1] crelri] Cr4]I11] clz]r1] Crojril]

C[11]11(0] clz211(10] cro1rol

C[14][0] C[10][0] cr71101 C[511[0] Cr4]ro] cr3jrol Ccl11([0]

89
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coin values

6 3 o 1 2 1 1 2 1 2 2 2 2 3 2 3 3
4 2 o 1 2 1 1 2 2 2 2 3 3 3 3 4 4
3 10 1 2 1 2 3 2 3 4 3 4 5 4 5 6
1 o 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

amounts

def make_change(amount, denoms):
fewest_coins = [[None for j in range(len(denoms))]
for i in range(amount + 1)]
coins_to_take = [[None for j in range(len(denoms))]

for i in range(amount + 1)]

for j in range(len(denoms))
fewest_coins[0][j] = 0O
coins_to_take[0][j] = O

for i in range(amount + 1)
fewest_coins[i][0] = i
coins_to_take[i][0] = 1

for i in range(1l,amount + 1) : # For each sub-amount
for j in range(1,len(denoms)) : # For each range of denominations

# Initially assume the best we can do is take 0 coins
# of the current (jth) denomination

best_coins = fewest_coins[i][j-1]

best_take = 0

k=1
while k * denoms[j] <= i :
coins = k + fewest_coins[i - k * denoms[j]][]j-1]
if coins <= best_coins :
best_coins = coins
best_take = k
k += 1
# Record the smallest number of coins and how many of
# this denomination to get that number of coins
fewest_coins[i][j] = best_coins
coins_to_take[i][]j] = best_take
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3 o/o 1/o 2/0 1/0 1/0 2/0 1/1 2/1 2/0 2/1 2/1 3/1 2/2 3/2 3/1
2 o/o 1/o 2/o 1/0 1/1 2/1 2/o0 2/1 2/2 3/2 3/1 3/2 3/3 4/3 4/2
1 o/o 1/o 2/o0 1/1 2/1 3/1 2/2 3/2 4/2 3/3 4/3 5/3 4/4 5/4 6/4
o o/o 1/1 2/2 3/3 4/4 5/5 6/6 7/7 8/8 9/9 10/10 11/11 12/12 13/13 14/14
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
amounts

6.2 Three problems

0 4|5 10
‘r‘e‘d‘b‘l‘a‘c‘k‘t‘r‘e‘e‘ rie|l|a e
o 1 2 3 4 5 6 7 8 9 10 11 0O 1 2 3 4

(dfaftlalsftfrfufcftfufrfe]s]
o 1 2 3 4 5 6 7 8 9 10 11 12 13

laftlofofrfifefn]m]s]
o 1 2 3 4 5 6 7 8 9

6.3 Elements of dynamic programming

0 3 2
2 4
1 8 3

6.4 Three solutions

o/S 150/S 150/S 150/S 150/S 190/T 200/S 220/S 220/S 220/S 240/T
o/S 150/S 150/S 150/S 150/S 150/S 200/T 220/S 220/S 220/S 220/S
o/S 150/S 150/S 150/S 150/S 150/S 150/S 220/T 220/T 220/T 220/T
o/S 150/S 150/S 150/S 150/S 150/S 150/S 150/S 150/S 150/S 150/S
o/S 150/T 150/T 150/T 150/T 150/T 150/T 150/T 150/T 150/T 150/T
o 1 2 3 4 5 6 7 8 9 10
capacities

items

© R N W
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s 10 o o/1 1/1 2/1 2/1 3/o 3/-1 3/-1 3/-1 3/-1 3/1 3/1 3/1 3/1  4/0

m 9 o o/1 1/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 3/1 3/1 3/1 3/1 3/1

h 8 o o/t 1/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 3/1 3/1 3/1 3/1 3/1

t 7 o o/1 1/1 2/0 2/-1 2/-1 2/o 2/1 2/1 2/1  3/o 3/-1 3/-1 3/-1 3/-1

i 6 o o/1 1/1 1/1 1/1 1/1 1/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1

r 5 o o/t 1/1 1/1 1/1 1/1 1/1  2/0 2/-1 2/-1 2/-1 2/-1 2/0o 2/-1 2/-1

o 4 o o/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

g 3 o of1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

1. 2 o of/1 1/1 1/t 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

a 1 o o/1 1/o 1/-1 1/o 1/1 1/-1 1/-1 1/-1 1/-1 1/-1 1/-1 1/-1 1/-1 1/-1

o o0 o o) (o) 0 o o 0 0 o o 0 0 o o
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
d a t a s t r u C t u r e s

8

7 Wi s 5 6

6 6

5 5

4 4

3 3

2

1

o

o 1 2 3 4 5 6 7 8




@) @ @ ® (®)

’ @@ ® ® |®
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[ [ attraction

hotel @

6.5 Optimal binary search trees

Key or miss event combined frequency

{} 0

a 59

{am and anywhere are be boat box car could dark} 92
do 36

{ eat eggs fox goat good green ham here house } 86
i 84

{if let} 5

in 40

{} 0

like 44

{ may me mouse } 16

not 83

{on or rain same say see so thank that the } 65
then 61

{ there they train tree try will with would } 99

you 34
{} 0
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in .05 i.104
do .045 like .055 do .045 then .076
RN RN / N\ /N
a.073 i.104 .001 you .042 a.073 .107 not .103 you .042
/N /N /N /N /N
.001 113 .107 .006 then .076 .001 .001 .113 like .055 .081 122 .001
/ A\ / O\
not .103 .122 in .05 .02
/N / N\
.02 .081 .006 .001

w\ /( q]+1 /( w\
/ best \ / best \ / best \ / best
subtree for subtree for subtree for subtree for

i+1,]] li,j—1] li,r—1] [r+1,j]

gi + Cli + 1][j] Cl[ =1+ qj41 Cli][r = 1]+ Clr +1][j]
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6.6

100

8/67_ 3
2
8/6x1.038/6

829/6

5%

Natural-breaks classification

100

A
2 . 9| . A/B
H :
i i
B
80 ; 801 g
i . B/C
C

70

H i C/D




6.7. CHAPTER SUMMARY 97

http://www.science.smith.edu/sal/2014/02/19/february-mystery-map-solution-revealed/

Average Adult Alcohol Consumption, by Country

Highest/Most

- Lowest/Least

m points, each in
their own class

m n
N—_———
m points, all
in one class

j—1 m n

candidate positions to
break interval

4 0.0/4 0.1/4 1.6/4 7.0/6 8.4/6 10.0/6 11.8/6 22.7/10 23.9/10
3 0.0/3 o01/3 52/3 7.0/4 16.4/5 19.4/6  21.0/6 22.7/6 45.6/6
2 0.0/2 o0.1/2 5.5/3 107/3 17.9/3 41.4/3 66.1/4 79.6/4 91.5/4
1 o0.0/0 o.1/o 55/0 372/0 89.4/0 144.9/0 234.1/0 329.5/0 415.5/0
1 2 3 4 5 6 7 8 9 10 11 12
72.7 73.2 75.8 80.4 83.6 85.3 88.7 90.4 91.1 91.6 95.8 97.3

6.7 Chapter summary


http://www.science.smith.edu/sal/2014/02/19/february-mystery-map-solution-revealed/
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Hash tables

7.1 Hash table basics

7.2 Separate chaining

—1—>{ NERVA

7—5{ CLAUDIUS 9—’( DOMITIAN 9—( MARCUS )—’( COMMODUS H

\L ——»{ TRAJAN HANTONINUS )—0—{

h(k

(k) ——( AucusTUs
——( caea
——»( CALIGULA H oTHO HV\TELL\US 3—»( VESPASIAN H HADRIAN )—o—{
——»( TIBERIUS H NERO )—0—{

——>» TITUS

key

99
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TG
74’( AUGUSTUS 3—>( TIBERIUS H TITUS 3—0—{

' —e(Comons (0

B‘U | (e (o M
N e W ¥
o

——»( ANTONINUS }—V{ COMMODUS 3—0—{

key

-+
-+
(oo
H

7—( CALIGULA 9—( OTHO 9—?( VITELLIUS HVESPAS\AN 9—?( HADRIAN )—V{ TIBERIUS ] o o o

O(1) «o
O(l) Cco
O(l) Cco
: T(n) = (n—1)co+c1+com+czn
O(1) ¢ = (n—=1)co+c1+ 2% +c3n
rehash — O(n) ¢ +cn = do+din
O(1) ¢ = 0O(n)
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7.3 Open addressing

powey AL T T T T T T T T T] o BRI T T T T T T 1]
o) 1
sputey AP Tl [ LT LTy e Aolefel LT T[]
3 1
oy PDOTESTAT T T T T T g oy ALBIELS[FIH] T [ T [
1 3

[(alofefelrlnfe] [ [ [ | [afolefolrlnfefc] [ [ |

8. put(C)

7. put(B)

o) (6]
o oy ATBTETCTFIRIOTET T g pry (ALOTELSIFIRIo I3 Ti] |
1
(Rlo[elclFlalelcala] | DOELGEODENHE
DDEOEODENHE (ATolefelFlalelca]T] |
DDEOEODERHE (ATo efaFlAle e 1] |
(ATolelc Flalelca]e] | DOEGGEODERNE
(ATolElc Flalelc]a]i] | (AlolelclFlalelc[ali] |
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Cases to plug the gap Cases to skip the gap
LTI N ITT i<g<p Bl Il s<i<p
7 7 1 7 7 T
ideal place gap position gap ideal place position

T T T T T

position ideal place  gap ideal place position gap

O [ s<p<i T p<g<i
T T T T

gap position ideal place position gap ideal place
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7.4 Hash functions

ha
int k String k
/ int hl(k) / int h2(k)

int h3(k)

string k J—L
w—l\ K

CALIGULA H OTHO 9—?( VITELLIUS 9—( VESPASIAN 9—?( HADRIAN H

Penalty 0 0 1 2 3
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Average  Variance
penalty

Area codes (n = 303)
Division [

673 .808

Mid square (I B LEE o Bt cenmrn Jumhon anam 1
1.09 1.64

Multip]icative |, bbb bttt atoatotiont eatetd spinusdnthornanidens snefsfonndin oot B . I TIPS S SRS St Fry |
.508 478

Fibonacci I b
617 .696

Universal [T |
578 617

Book ISBNs (n = 718)

Division

618 1.05
Mid square

812 1.48
Multiplicative

-565 954
Fibonacci

544 873
Universal

.667 1.15

Mountain heights in meters (n = 1359)

Division
577 1.03

Mid square
857 1.80

Multiplicative
.669 1.30

Fibonacci
577 1.05

Universal
.662 1.30
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Average  Variance

penalty

Randomly generated from [0,1000) (n = 150)

Division | RTINS SN S cend e raeedinaraekn et we td e et ndwies Faowen
1.36 958

Mid square
1.86 1.96
Multiplicative I il i e ein etttz i oL Gz oaaara. . ameeozmnid teend. e ws Biae oL
1.34 919

Fibonacci [ A
1.41 1.07

Universal Pt v vewdor 2 dmdiaia . mdian e e naBa k1 [ RV ET T S |
1.39 1.02

Randomly generated from [0,1000) (n = 400)

Division I:
518 1.16

Mid square
1.73 3.68
Multiplicative
-405 930

Fibonacci
448 .980

Universal liz.s
.488 1.08
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Average  Variance
penalty
Surnames (1 = 1000)

ASCII sum
477 1.26

String polynomial
.400 1.00

Carter-Wegman
339 892

Mountains (n = 1359)

ASCII sum
.526 .921

String polynomial
551 .980

Carter-Wegman
.631 1.17

Chemicals (n = 663)

ASCII sum
.505 1.00

String polynomial
424 .805

Carter-Wegman
.800 1.63

Books (n = 718)

ASCII sum
818 1.51

String polynomial
745 1.30
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Carter-Wegman
2.06 4.08

Randomly generated strings (1 = 150)

ASCII sum T T TR 0 SRS SOVt ST ST S NS (- IOR TS 1 S A T N S T
1.32 .879

String polynomial Looses e e e ool B oL maia mon O I S |

143 1.09
Carter—Wegman | IR TIPS S SRS S SN S T VTR SRR YOO SV S T A R PSR { DEPRPRE B
1.41 1.05

Randomly generated strings (n = 400)

ASCII sum
515 1.15

String polynomial
425 925

Carter—Wegman [P  Prores P
.540 1.20

7.5 Perfect hashing

h(k) = (93,0) € #mn 10

/ \

T

h3(k) = (47,22) € Ao 4 hg(k) = (0,0) € Ho1 o

78[ss] | | 93]

hz(k) = (56, 15) S %01 9 h7(k) = (O, 0) S ,%0101 0
3l [ 1 [ les[3o] [ |

[e2]
[

hi(k) = (0,0) € g1 0 he(k) = (1,100) € o1 4

53] j6sloa] [ |

7.6 Chapter summary






8
String processing

8.1 Sorting algorithms for strings

‘ dais ‘ card ‘ bark ‘ care ‘ even ‘ barb ‘ doze ‘ cart ‘ carb ‘ axle ‘ daze ‘ exam ‘ axis ‘ bard ‘ carp ‘

‘ card ‘ bark ‘ care ‘ barb ‘ carb ‘ axle ‘ axis ‘ bard ‘ carp ‘ dais ‘ even ‘ doze ‘ cart ‘ daze ‘ exam ‘

‘ barb ‘ axle ‘ axis ‘ bard ‘ card ‘ bark ‘ care ‘ carb ‘

i j k

‘ bark ‘ barb ‘ card ‘ care ‘ cart ‘ dais ‘ even ‘ doze ‘ carb ‘ axle ‘ daze ‘ exam ‘ axis ‘ bard ‘ carp ‘
start stop

N—_——

<pivot =pivot >pivot unsearched
i j k
‘ bark ‘ barb ‘ axle ‘ axis ‘ bard ‘ card ‘ care ‘ cart ‘ carb ‘ carp ‘ dais ‘ even ‘ doze ‘ daze ‘ exam ‘
start stop
<pivot =pivot >pivot

109
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fﬁ F% %ﬁ 3.(1-1)
FEREEREN FEREEREN e ] [z ] 2] 9w-v

‘dais‘ card‘ bark‘ care ‘even ‘barb ‘doze ‘cart‘ carb ‘axle ‘daze ‘exam ‘axis ‘bard‘ carp‘

elo [z 8] -

‘axle ‘axis ‘ bark ‘ barb ‘ bard‘ card‘ care ‘cart‘ carb‘ carp ‘dais ‘doze ‘daze ‘even ‘exam
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‘ can ‘ core ‘ hope ‘ any ‘ ball ‘ done ‘ a ‘ an ‘ i ‘ give ‘ eve ‘ frond ‘ beach ‘ event ‘ front ‘

‘ can ‘ any ‘ a ‘ an ‘ i ‘ eve ‘ beach ‘ core ‘ hope ‘ done ‘ give ‘ ball ‘ frond ‘ event ‘ front ‘

‘ a ‘ an ‘ i ‘ beach ‘ eve ‘ event ‘ ball ‘ can ‘ done ‘ frond ‘ front ‘ hope ‘ core ‘ give ‘ any ‘

‘ a ‘ i ‘ ball ‘ can ‘ beach ‘ give ‘ an ‘ any ‘ done ‘ hope ‘ core ‘ frond ‘ front ‘ eve ‘ event ‘

‘ a ‘ an ‘ any ‘ ball ‘ beach ‘ can ‘ core ‘ done ‘ eve ‘ event ‘ frond ‘ front ‘ give ‘ hope ‘ i ‘

8.2 Tries
ELIZA
/ \
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\
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isTerminal false

J

value null

KLMNOPQARSTUVWXY Z

LI T TTIHL

A B CDE FGH
chitdren £ [ [£L] ]
I

/

isTerminal false value null
. ABCDEFGH I JKLMNOPQRSTUVWXY Z
chitdren [[[ T [ [ ] ] (TTTTTITTTTI [ ]
I
8.3 Huffman encoding
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— — —

00101011100010011110010011000110000




00101011100010011110010011000110000. ..

8.3. HUFFMAN ENCODING

00101011100010011110010011000110000.. .
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defiintely
‘(a(\e?

ins

definitely defianitely
del\/ i
defiitely® > defitely —— > defiatel

n 6/ins-all
e 5/ins-all
v 4/ins-all
a 3/ins-all
r 2/ins-all
C

del
defiantelye% defiantly

5/ins 4/ins 4/ins 3/ins 3/ins 2/nop 3/del
4/ins 3/ins 3/ins 2/ins 2/sub 3/del 4/del
3/ins 2/ins 2/ins 1/nop 2/del 3/del 4/del
2/ins 1/nop  1/transp 2/del 3/del 4/del 5/del
1/ins 1/sub 1/nop 2/del 3/del 4/del 5/del

1/ins-all ~ o/nop 1/del 2/del 3/del 4/del 5/del 6/del

o/del-all 1/del-all 2/del-all 3/del-all 4/del-all 5/del-all 6/del-all 7/del-all

8.5 Grammars

((2%x) /(8% (y+2)

Sentence
NounPhrase
ConcNounPhrase
CNPA
Nominal

Aricle

Noun

the dog

C a r v 1 n g

P
) ANV
y/ \2

Sentence
VerbPhrase
VerbPhrase NounPhrase ‘
‘ VPA
ConcNounPhrase
VPA \ Prepositional Phrase
CNPA
VPB NounPhrase
VPB
Nominal ConcNounPhrase
Nominal CNPA
Verb Nomz'i‘ml Nomz'n‘al
A;"ticle Ar‘ijective Adjec‘tive I\‘Ioun Ve‘rb Perosition Ar‘ticle Nz‘nm

ran the great big dog ran through the field
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Sentence (2)

NounPhrase

ConcNP

VerbPhrase

VPA
3 3
PrepPhrase
VerbPhrase
VPA VPB
4
Sentence
NounPhrase
ConcNP
1 CPNA
NounPhrase VerbPhrase

CPNA ConcNP VPA VPB

Nominal
VerbPhrase

VPA  VPB
Prep  Noun
Verb

Nominal
VerbPhrase
VPA Verb VPB

Noun Adj

Nominal
VerbPhrase
VPA VPB
Noun
Verb

the plain trains like a juicy apple

8.6  Chapter summary
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