
1 Donald E. Knuth. The Art of Com-
puter Programming. 2nd ed. Addison
Wesley Longman Publishing Co.,
Inc., 1997.

Preface

This book serves as a textbook for a sophomore-level course
in data structures and algorithms. We assume students have
had the equivalent of a year of programming, at least some of
that in an object-oriented setting, and that they have seen ba-
sic data structures. A course in data structures and algorithms
systematizes what students already know about program-
ming, endows that body of knowledge with rigor, and widens
the variety of data structures and algorithmic techniques that
students master. For the sake of rigor, we also assume stu-
dents know some discrete mathematics, especially sets, formal
logic, and proofs, including mathematical induction. I think
of this course as the most important one in undergraduate
computer science. It is a student’s transition from program-
ming to computer science itself. Everything that follows in the
curriculum depends on it.

Many good books on algorithms and their supporting data
structures have been written throughout computer science’s
history, pitched at readers at various levels. In this book’s
preparation I owe much to other authors’ work at organizing
this body of knowledge—and ultimately we all are indebted
to the great repository of algorithmic wisdom, Don Knuth’s
The Art of Computer Programming.1 It seems it’s the lot of the
instructor and textbook author, mother-robin-like, to chew the
Knuthian worm and spit it gently in the students’ mouths.

With this, my contribution to that effort, I hope to push our
students further in their internalizing this body of knowledge.
This book does not attempt to be an encyclopedia of various
data structures and algorithmic techniques, or even a curated
tour of selected topics. Instead, I’ve focused on the themes—

xi



xii Preface

the loci or commonplaces—that tie the topics together. Nearly
everything we do in a course like this can be knit from a few
basic principles about how memory is structured and the cost
of algorithmic elements. This book directs students’ atten-
tion to the story of how these elements can be adapted and
recombined for better efficiency and more powerful problem-
solving. They can then retain the principles and arc of the
story even if the details fade in time.

Preparing this book required making a variety of de-
cisions. The first was how to present the code. This is a
dilemma because we need to show that the concepts are inde-
pendent of programming languages. Some textbooks do this
by using only pseudocode. But presenting algorithms in real,
runnable code keeps the textbook honest—with pseudocode
there is always the temptation to abstract away inconvenient
details. Consequently there is almost no pseudocode in this
text. Other textbooks choose one programming language and
show language independence by avoiding features that are
distinctive to that language. This text’s philosophy, however,
is that a programming language is a programmer’s most im-
portant tool for expressing algorithmic ideas. To take full
advantage of that expressive power, we don’t discard those
distinctive features that embody that language’s spirit.

To work out that philosophy but avoid bias towards a sin-
gle language, this text uses four languages for code examples
and exercises: Java, Python, C, and Standard ML (SML). In
some cases, to present a well-rounded perspective we present
the same algorithm or data structure in more than one of
these languages. At other times the text contains code in one
language and leaves implementation in another language as
an exercise. But most of the time we simply choose whichever
of these four languages expresses the concept at hand most
clearly: Java is the preferred medium for data abstraction, and
consequently this book uses Java the most. Python’s clean
syntax makes it appropriate for succinct descriptions of al-
gorithms. C is best when low-level details are relevant. SML
allows us to show applicative, stateless programming in its
pure form.



Preface xiii

The decision to use four languages comes with the risk
of scaring readers off. Do students need to know four pro-
gramming languages in order to read this book? No, they
don’t. What they need is competence in Java—or a similar
language like C# or Objective C from which they can transi-
tion to Java—and a willingness to learn enough Python as they
go along so that they can read the Python code examples.
That isn’t a tall order, really, since Python reads like pseu-
docode to those who have experience in another language.
The bulk of the code examples and exercises are in Java, as
are all of the projects. Students with no background in C can
read most of the C code as if it were Java, and they can skip
code that uses distinctive C features without missing the flow
of any section. The SML code similarly can be skipped, if nec-
essary. Nevertheless, readers will have a richer experience if
they have even a smattering of at least one of C or SML.

Another decision that warrants mention here is including
a chapter on dynamic programming. The risk in this case is
giving readers the impression that this book is designed for
an advanced course in algorithms rather than sophomore data
structures and algorithms. But I’m convinced dynamic pro-
gramming is a crucial topic that students need to see early.
The chapter on dynamic programming in this book has mod-
est goals for the students. Specifically, after working through
the chapter, they should understand what dynamic program-
ming is, and they will have gained experience implementing
dynamic programming algorithms when the solution is de-
scribed for them mathematically. An experience like this
makes it more likely they can master the technique in a more
advanced course. Greedy algorithms, which are often pre-
sented as a companion topic to dynamic programming, aren’t
given their own chapter but are treated opportunistically
throughout the book as problems with greedy solutions come
up.

Adapting this book for a specific course comes down to
finding the right pace to cover Chapters 1 and 2, which to-
gether constitute a prologue for the rest of the text. We expect
that most students have seen, at least in passing, most of the



xiv Preface

topics in these chapters, but not systematically or with pre-
cision. These chapters review, fill in the gaps, and show how
the topics all fit together. A class of students with a strong
familiarity with data structures, ADTs, big-oh notation, and
loop invariants may be able to breeze through these two chap-
ters in a few weeks. But the chapters themselves contain a
thorough introduction to all the foundations of data struc-
tures and algorithms for students who need that level of de-
tail. For a class of students with a less strong background, the
first two chapters have enough material to fill half a semester
or more.

The remaining chapters are independent of each other, for
the most part. They can be reordered, although the order in
which they appear fits with a natural progression of more ef-
ficient implementations of the map abstract data type. Chap-
ter 3, “Case Studies,” contains topics that aren’t long enough
to get their own chapters but are each nice illustrations of the
principles laid out in the first two chapters. Instructors can
choose which sections in that chapter to cover, though some
later topics use results from specific case studies presented in
this chapter.

The project sequence in this book follows the principle that
students need to implement the data structures and algo-
rithms for themselves in order to master them. Accordingly,
the items designated as projects follow the pattern of “Im-
plement the data structure or algorithm described in this
section.” The book is also full of exercises of various shapes
and sizes. Some require mathematical reasoning, others are
short coding tasks, and others are substantial coding prob-
lems that apply the topics of the section. The complete code
base, including in-text examples and starter code for the ex-
ercises and projects, can be downloaded from the website for
this book: tjvandrunen.github.io/algo-common/

This book evolved from teaching notes I use in my own
data structures and algorithms course, CSCI 345 at Wheaton
College (IL). I credit two students, Lisa Hemphill and Stirling
Joyner, for the origin of the book. I once mentioned during
the Spring 2016 offering of CSCI 345 that I had a wish to write



Preface xv

my own textbook for the course. They came up to me after
class and encouraged me to do it. Without that affirmation,
this might have remained nothing but a nifty, vague idea.

I thank all my students who suffered through drafts of this
book during the writing process. In particular, Caleb Veth,
Andy Peterson, Andy Holmberg, Sharon Dunbar, Josiah Hsu,
Claire Wagner, and Eliénaï Ouoba caught many errors and
gave other valuable feedback. Much gratitude is due to Caleb
Clark, who served as teaching assistant to that course for
several semesters and spent summer 2017 revising the book’s
code base and supporting the writing process in other ways.
I thank all those involved in the nominating and selecting
process for the senior teaching award that paid both for Caleb
Clark’s summer work and for a course release for me in the
Spring 2018 term; similarly I thank the Wheaton College
sabbatical committee which awarded me a sabbatical for Fall
2019. Thanks also to John Jeffrey of Elmhurst University and
David Stucki of Otterbein University who served as guest
instructors at Wheaton College during my release time.

This book was typeset in LATEX using the tufte-book doc-
ument class. I am indebted to various participants in online
LATEX discussion communities for help on typesetting details.
The page geometry is based on that used by Ian Oliver. The
adornments that mark off exercises and projects come from
the adforn package by the Arkandis Digital Foundry.

I thank Tom Sumner at Franklin, Beedle, who guided this
project from proposal, through writing, reviewing, and revis-
ing, to publishing. I thank the reviewers of the chapter drafts:

John Jeffrey Elmhurst University
Samuel McCauley Williams College
Vijay Ramachandran Colgate University
Darren Strash Hamilton College
John Zelle Wartburg College

Nearly all of their comments and calls for improvement were
spot-on, though I regret that for the sake of keeping this book
to a manageable length, some good suggestions for additions
couldn’t be taken. I also thank Tom MacWright for providing
useful comments on a draft of Section 6.6.



xvi Preface

I thank my wife Esther and children Annika, Isaac, Silas,
and Timothy for constant moral support. In particular, little
Tim is a living reminder of how long I have been working
on this book, since I first pitched the idea of the book to my
publisher a few weeks after Tim was born. Finally, I thank
God for this project. DiÄ t¿n o ktirm¿n to‹ jeo‹. . . tòn logikòn
latre–an Õm¿n. “In light of the mercies of God. . . your rational
service.” Rom 12:1.


